
Journal of Sound and <ibration (2000) 230(3), 507}520
doi:10.1006/jsvi.1999.2626, available online at http://www.idealibrary.com on
GENERATION OF CUMULATIVE SUM FREQUENCY AND
DIFFERENCE FREQUENCY ACOUSTIC WAVES IN

A TWO-DIMENSIONAL HARD-WALLED WAVEGUIDE

M.-X. DENG

Physics Department, ¸ogistics Engineering ;niversity, Chongqing 400016,
People1s Republic of China

(Received 12 April 1999, and in ,nal form 28 July 1999)

An approach based on second-order approximation technique and partial wave
analysis method has been proposed for analyzing the generation of the cumulative
sum frequency (SF) and di!erence frequency (DF) acoustic waves in a
two-dimensional hard-walled waveguide. There are two or more sets of
fundamental modes with di!erent frequencies, in the waveguide, if an excitation
source is of multi-frequency. The cross-interaction between two partial waves of the
fundamental modes with di!erent frequencies causes the generation of the driven
SF and DF waves. The driven SF and DF waves may have the cumulative growth
e!ect once the two fundamental modes with di!erent frequencies have the same
phase velocities. With appropriate boundary and initial conditions of excitation,
the physical process of generation of the cumulative SF and DF waves has been
clearly shown, and the analytical solution of the cumulative SF and DF waves has
also been determined. The solution shows that the cumulative SF and DF acoustic
"elds may be symmetrical or antisymmetrical. The numerical results clearly reveal
the distortion and the symmetry of the "eld patterns of the cumulative SF and DF
waves.

( 2000 Academic Press
1. INTRODUCTION

The hard-walled waveguide "lled with #uid is one of the simplest waveguides. Due
to the bulk non-linearity of the #uid, second order acoustic wave generation will
occur once a fundamental mode propagates in the waveguide. If the thickness of the
waveguide is much less than its transverse width, for simplicity, the waveguide can
be assumed to be two dimensional. Thus, the examination of second order acoustic
wave generation in a two-dimensional hard-walled waveguide can be of practical
signi"cance. The generation of second order acoustic waves in a two-dimensional
hard-walled waveguide has drawn more and more attention, and has been
discussed intensively in the past [1}4]. So far, much attention has been drawn to
the case in which the excitation source is of single frequency. In practical cases,
however, the excitation source may include two or more frequencies, and two or
more sets of acoustic propagation modes with di!erent frequencies will be
generated. Due to the bulk non-linearity of the #uid in the waveguide, second order
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acoustic waves [including the second harmonic, the sum frequency (SF) and
di!erence frequency (DF) acoustic waves] will occur, and, in general, it is di$cult to
obtain an analytical expression for the harmonic "elds to predict and demonstrate
their non-linear characteristics.

Moreover, previous analyses were focused on the cumulative second-harmonic
generation caused by an excitation source with a single frequency. From
those analysis results we still do not comprehend the cumulative growth e!ect of
the SF and DF waves that cannot be avoided in practical case. Hence, the
examination on the physical process of generation of the cumulative SF and DF
waves is necessary.

Usually, analyses are focused on the cumulative growth of second order acoustic
waves due to their obvious e!ect. This article, under a quadratic perturbation,
derives a full solution for the generation of the cumulative SF and DF waves
caused by an excitation source with two di!erent frequencies. The solution should
work for any excitation source with two di!erent frequencies in contrast to the
previous analysis in which the source is of single frequency. For simplicity, we
still assume that the #uid in the waveguide is homogeneous with no attenuation,
no dispersion and no mean #ow, and that there is no energy exchange between
the fundamental waves and the higher harmonics, and that second order wave
amplitude is much smaller than the fundamental one which we suppose as
constant. The analysis results reveal that the SF and DF waves will have the
cumulative e!ect once two fundamental modes with di!erent frequencies have
the same phase velocities, and that the symmetrical characteristics of the
cumulative SF and DF acoustic "eld patterns are dependent of those of two
fundamental modes.

2. THEORETICAL FUNDAMENTAL

A Cartesian co-ordinates system is shown in Figure 1, in which the oz-axis
coincides with the center of the hard-walled waveguide, and the oy-axis is normal to
the walls of the waveguide. It is assumed that an excitation source at position z"0
has two frequencies f

1
and f

2
. Each frequency corresponds to a set of fundamental

modes. For simplicity, the sign, ( f
i
, l ), is used to indicate the lth fundamental mode

with frequency f
i
(i"1, 2). According to the partial wave analysis method [5], the

lth fundamental mode with frequency f
i
and angular frequency u

i
consists of two

partial longitudinal waves which are re#ected at the upper and lower walls of the
waveguide. Because there is a condition of phase matching between the two partial
longitudinal waves of the ( f

i
, l ) mode, the oz-axis components of two wave vectors

are of the same magnitude. The formal solution of two partial longitudinal waves of
the ( f

i
, l ) mode is given by [4, 5]
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Figure 1. The wave vectors and the mechanical displacement ones of the ( f
1
, m) and ( f

2
, n) modes,

r-u (1)
(f1 ,m )~1

, s-u (1)
(f1 ,m )~2

, t-u (1)
(f2 ,n )~1

, and u-u (1)
(f2 ,n )~2

.
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with
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In equations (1) and (2), u (1)
(fi ,l)~p

(p"1, 2) is the mechanical displacement vector of
the partial longitudinal wave, u

(fi ,l)~p
is the amplitude of u (1)

( fi ,l)~p
, K0

(fi ,l )~p
is the

unit vector of the wave vector K
(fi ,l)~p

, K
fi

is the magnitude of K
(fi ,l)~p

, c is the
longitudinal velocity of the #uid, and c

(fi ,l)
denotes the phase velocity of the ( f

i
, l )

mode.
The ultimate displacement vector of the ( f

i
, l) mode is given by

u (1)
(fi ,l)

"u (1)
(fi ,l)~1

#u (1)
(fi ,l)~2

. (3)

The boundary condition requires that the oy-axis component of u(1)
(fi ,l)

equal zero at
y"$d, which yields the following matrix equation:

[M(k
(fi ,l)

d ) ] C
u
(fi ,l)~1

u
(fi ,l)~2

D"0, (4)
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where [M(k
(fi ,l)

d )] is a 2]2 matrix the elements of which are given in Appendix A.
From DM (k

(fi ,l )
d) D"0 we have the equations.

2a
(fi ,l)

k
(fi ,l)

d"ln (l"0, 1, 2,2) (5)

and

u
(fi ,l)~1

"(!1) lu
(fi ,l)~2

. (6)

The amplitude u
(fi ,l)~p

(p"1, 2) can be determined by the excitation source. The
wave vectors and the mechanical displacement ones of the partial waves associated
with the ( f

1
, m) and ( f

2
, n) modes are illustrated in Figure 1.

A second order wave equation of the #uid in the Cartesian co-ordinates system is
given by [4, 6]

c2+(+ ) u(2))!u(2)
,tt
"F (u(1)),

F(u(1))"1
2
c2(1#c)+(+ ) u(1))2, (7)

where c is the ratio of speci"c heats for the gas or (1#B/A) for the liquid, u(1) and
u(2) denote the fundamental and second order harmonic displacements,
respectively, F(u(1)) is the driving force produced by the fundamental wave u(1) due
to the bulk non-linearity of the #uid.

In fact, only the real part of u (1)
(fi ,l)~p

(p"1, 2) has physical meaning in a practical
problem. Thus, the ultimate displacement vector u(1) of the ( f

1
, m) and ( f

2
, n) modes

can be expressed as
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where u8 (1)
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(i, p"1, 2, l"m, n) is the complex conjugation of u (1)
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. Inserting
u(1) into F(u(1)) yields the multi-component of the driving force. Because the
cumulative second-harmonic generation arising from the partial wave
self-interaction of each fundamental mode has been intensively studied before
[1}4], we only taken into account the partial wave cross-interaction between the
( f

1
, m) and ( f

2
, n) modes. Thus, the corresponding driving force component can be

formally written as [neglecting the factor exp [!j(u
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In equation (9), c.c. stands for the complex conjugation of the preceding term,
K0( f

1
$f

2
,m,n)pq is an unit vector of K( f

1
$f

2
,m,n)pq , the subscript, ( f

1
#f

2
) or ( f

1
!f

2
),

denotes whether the corresponding physical quantity is associated with SF or with
DF term, respectively. In this following analysis, for simplicity, we may take into
account only the "rst term of equation (9). i.e., we use the exponential function
instead of the cosine function.

Combining equations (7) and (9) yields the driven SF and DF waves
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The wave vectors and the mechanical displacement ones of the driven SF and DF
waves are shown in Figure 2. Generally, (u

1
$u

2
)2Oc2K( f

1
$f

2
,m,n)pq )K( f

1
$f

2
,m,n)pq ,

the amplitude of the driven SF or DF wave is a "nite value, i.e., there is no
cumulative growth e!ect for the driven SF and DF waves. Usually, we are
interested in the case in which the second order acoustic waves have a cumulative
e!ect. For a driven SF and DF waves, there is a resonant phenomenon once the
Figure 2. The wave vectors and the mechanical displacement ones of the driven SF and DF waves,
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; (a) the SF case, (b) the DF case.
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denominator of the amplitude of u (D)( f
1
$f

2
,m,n)pq , equals zero. If one take into account

the solution to u (D)( f
1
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,m,n)pq , the resonance occurs once (u
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It is easy from equation (13a) to deduce the relationship h
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. Apparently, equation (13b)

cannot be satis"ed; therefore, there is no resonant phenomenon for the driven SF or
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The solution of the driven SF and DF waves, under the condition c
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,
can be formally given by [4]
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where A is a constant to be determined. After substituting equation (14) into
equation (7), we have [the right-hand side of equation (7) is F( f
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Combining equations (14), (15), and the relationship h
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Figure 3. The wave vectors and the mechanical displacement ones of the driven SF and DF waves,
as c

(f1 ,m)
"c

(f2,n)
, r-u (D)

( f
1
$f

2
,m,n)11

, s-u (D)
( f

1
$f

2
,m,n)22

, t-u (D)
( f

1
$f

2
,m,n)12

, and u-u (D)
( f

1
$f

2
,m,n)21

; (a) the SF case,
(b) the DF case.

ACOUSTIC WAVES IN HARD-WALLED WAVEGUIDE 513
Thus the driven SF and DF waves, u (D)( f
1
$f

2
,m,n)pp (p"1, 2), grow linearly with the

propagation distance once c
(f1 ,m)
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. For this case there is a relationship
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The wave vectors and the corresponding mechanical displacement ones of the
driven SF and DF waves with the cumulative e!ect are shown in Figure 3. There
are the driven SF and DF waves without the cumulative growth e!ect, i.e.,
u (D)( f

1
$f

2
,m,n)pq (pOq), beside u (D)( f

1
$f

2
,m,n)pp (p"1, 2).

Zhou and Shui [7] have revealed that the e!ect of cumulative growth of re#ected
second harmonic, at an interface, arises from both the self-interaction of the
primary wave (fundamental wave) and the boundary restriction. For the problem of
generation of the cumulative SF and DF waves in the waveguide, the partial waves
of the ( f

1
,m) and ( f

2
, n) modes may be considered to be re#ected at the upper and

lower walls of the waveguide, i.e., u (1)
(f1 ,m)~1

and u (1)
(f2 ,n)~1

, may be considered as the
re#ected waves of u (1)

(f1,m)~2
and u (1)

(f2 ,n)~2
, and vice versa. Thus, there are the

cumulative SF and DF waves due to the two walls of the waveguide beside
u(D)( f

1
$f

2
,m,n)pp (p"1, 2).

For the case of the cumulative SF and DF wave generation, there is a boundary
condition which requires that the oy-axis component of SF and DF mechanical
displacement vectors cancel out at the two hard walls. However, this boundary
condition cannot be satis"ed if we only take into account the driven SF and DF
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waves. To satisfy this boundary condition, we must introduce the freely
propagating SF and DF waves, i.e., the homogeneous solution of equation (7) [8].

There is a condition of phase matching between the driven and the freely
propagating SF and DF waves. Thus, the freely propagating SF and DF waves
which are to be introduced should propagate along the direction of K( f

1
$f

2
,m,n)pp or

K( f
1
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2
,m,n)pq . Whereas, there are four driven SF and DF waves under the condition
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/c has a cumulative growth e!ect (see Figure 3),

the freely propagating SF and DF waves propagating along K( f
1
$f

2
,m,n)pp should

include cumulative terms along the oy- and oz-axes. However, the freely
propagating SF and DF waves with the wave vector K( f

1
$f

2
,m,n)pq do not include

cumulative terms because u(D)( f
1
$f

2
,m,n)pq is independent of propagation distance.

Considering the oz-axis phase matching between the driven and the freely
propagating SF and DF waves, we describe the freely propagating SF and DF
waves propagating along K( f

1
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2
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1
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2
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2
,m,n)pp is the amplitude of the freely propagating cumulative wave, and
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2
,m,n)pq the amplitude of the freely propagating plane wave.

The ultimate SF and DF waves consist of the driven and the freely propagating
SF and DF waves. It follows that
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where u (D)( f
1
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DF wave boundary condition requires that the oy-axis component of
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where the right-hand side of equation (21) is presented in Appendix A, and h
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shown in Figure 3. Equation (21) should be satis"ed at any point on the walls of the
waveguide, which means that [4, 7]
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1
$f

2
,m,n)11 sin h

(f1 ,m)
#u (FC)( f

1
$f

2
,m,n)11 cos h

(f1 ,m)
u (D)( f

1
$f

2
,m,n)22 sin h

(f1 ,m)
#u (FC)( f

1
$f

2
,m,n)22 cos h

(f1 ,m)
D"0 (22)

and

[M(a
(f1 ,m)

k
(f1 ,m)

d$a
(f2 ,n)

k
(f2,n)

d)] C
u (FP)( f

1
$f

2
,m,n)11

u (FP)( f
1
$f

2
,m,n)22 D

#[M(a
(f1 ,m)

k
(f1,m)

dGa
(f2 ,n)

k
(f2 ,n)

d )] C
u (FP)( f

1
$f

2
,m,n)12#u (D)( f

1
$f

2
,m,n)12

u (FP)( f
1
$f

2
,m,n)21#u (D)( f

1
$f

2
,m,n)21 D

]
sin h

(f1
$f

2)
sin

(f1 ,m)

"C
p
1

p
2
D . (23)

Taking into account the form of the coe$cients matrices of equations (22) and (23),
and the dispersion relationships, i.e., 2a

(f1 ,m)
k
(f1 ,m)

d"mn and 2a
(f2 ,n)

k
(f2 ,n)

d"nn,
we have

DM(a
(f1 ,m)

k
(f1 ,m)

d$a
(f2,n)

k
(f2 ,n)

d ) D"0,

DM(a
(f1 ,m)

k
(f1 ,m)

dGa
(f2 ,n)

k
(f2 ,n)

d) D"0. (24)
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Equation (22) has a non-trivial solution. In this article, interest is focused on the
physical process of generation of the cumulative SF and DF waves. Combining
equations (5), (22), and (24) yields

[u (D)( f
1
$f

2
,m,n)11 sin h

(f1 ,m)
#u (FC)( f

1
$f

2
,m,n)11 cos h

(f1 ,m)
]

"(!1)m`n[u (D)( f
1
$f

2
,m,n)22 sin h

(f1 ,m)
#u (FC)( f

1
$f

2
,m,n)22 cos h

(f1 ,m)
]. (25)

From equations (6) and (16) we have u (D)( f
1
$f

2
,m,n)11"(!1)(m`n)u (D)( f

1
$f

2
,m,n)22 , and

then, the relationship u (FC)( f
1
$f

2
,m,n)11"(!1)(m`n)u (FC)( f

1
$f

2
,m,n)22 . Thus, we can draw

a conclusion that the ultimate cumulative SF and DF waves (including the driven
and the freely propagating waves) are symmetrical as m#n"even number, and
antisymmetrical as m#n"odd number, i.e., the characteristics of symmetry of the
cumulative SF and DF waves are determined by those of the ( f

1
,m) and ( f

2
, n)

modes.
Next we derive the analytical solution of the cumulative SF and DF waves in the

waveguide. The cumulative SF and DF wave component along the oz-axis, denoted
by u (2C)( f

1
$f

2
,m,n)z , is given by [neglecting the factor exp [j(k

(f1 ,m)
$k

(f2 ,n)
)z]]

u (2C)( f
1
$f

2
,m,n)z"sin h

(f1 ,m) G
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(f1 ,m)
u (D)( f

1
$f

2
,m,n)11#cos h

(f1,m)
u (FC)( f

1
$f

2
,m,n)11]

z
d
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u (D)( f
1
$f

2
,m,n)11!sin h

(f1 ,m)
u (FC)( f

1
$f

2
,m,n)11]

y
d
H R

~

#sin h
(f1,m) G

[sin h
(f1,m)

u (D)( f
1
$f

2
,m,n)22#cos h

(f1,m)
u (FC)( f

1
$f

2
,m,n)22]

z
d

#[cosh
(f1 ,m)

u (D)( f
1
$f

2
,m,n)22!sinh

(f1,m)
u (FC)( f

1
$f

2
,m,n)22]

y
d
H R

`
,

(26)

where R
`

and R
~

are presented in Appendix A.
We assume that the ( f

1
, m) and ( f

2
, n) modes are radiated by a pistonlike

excitation source at z"0. The initial condition of excitation requires that
u (2C)( f

1
$f

2
,m,n)z"0 at z"0. Thus equation (26) leads to [3, 4, 7, 9]

u (FC)( f
1
$f

2
,m,n)pp"

cos h
(f1,m)

sin h
(f1,m)

u (D)( f
1
$f

2
,m,n)pp , p"1, 2. (27)

Now we have determined the ultimate cumulative SF and DF waves by equations
(16), (20) and (27). The cumulative SF and DF waves associated with the ( f , m) and
1
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( f
2
, n) modes can be written as

u (2C)( f
1
$f

2
,m,n)"u (2C)( f

1
$f

2
,m,n)11#u (2C)( f

1
$f

2
,m,n)22 ,

u (2C)( f
1
$f

2
,m,n)pp"u (D)( f

1
$f

2
,m,n)pp

z
d sin h

(f1 ,m)

]K0
(f1 ,m)~p

exp [ j (u
1
$u

2
)K0

(f1 ,m)~p
) r

p
/c], p"1, 2. (28)

Equation (28) satisfying the boundary and initial conditions of excitation is the
solution to be determined.

From equation (27) it is easy to show that the right-hand side of equation (23)
equals zero. On the basis of equation (24), equation (23) yields two matrix
equations,

[M(a
(f1 ,m)

k
(f1 ,m)

d$a
(f2 ,n)

k
(f2,n)

d )] C
u (FP)( f

1
$f

2
,m,n)11

u (FP)( f
1
$f

2
,m,n)22 D"0,

[M(a
(f1 ,m)

k
(f1 ,m)

dGa
(f2 ,n)

k
(f2,n)

d)] C
u (FP)( f

1
$f

2
,m,n)12 #u (D)( f

1
$f

2
,m,n)12

u (FP)( f
1
$f

2
,m,n)21#u (D)( f

1
$f

2
,m,n)21 D"0. (29)

Equations (24) and (29) show that the freely propagating plane waves have a
non-trivial solution. However, there is a shortcoming that the freely propagating
plane waves cannot be fully found in the present analysis. The cumulative SF or DF
wave plays a dominant role due to its cumulative growth e!ect. It is less important
that the freely propagating plane waves cannot be determined.

In practical cases, the solution should be the real part of u (2C)( f
1
$f

2
,m,n) shown in

equation (28), i.e., (u (2C)( f
1
$f

2
,m,n)#u8 (2C)( f

1
$f

2
,m,n) )/2, where u8 (2C)( f

1
$f

2
,m,n) is the complex

conjugation of u (2C)( f
1
$f

2
,m,n).

3. QUANTITATIVE ANALYSIS

On the basis of equation (5) we have the following dispersion equation:

c
(fi ,l)
c

"

4f
i
d/c

J16 ( f
i
d/c)2!l2

, (l"0, 1, 2, 3,2). (30)

Figure 4 shows the dispersion curves corresponding to equation (30). The beeline
¸ is parallel to the horizontal axis. There are a series of cross points between the
beeline ¸ and the dispersion curves. For example, we take into account the two
cross-points A and B with the co-ordinates A ( f

1
d, c

(f1 ,m)
, m)"(0)95c, 1)64c, 3) and

B( f
2
d, c

(f2 ,n)
,n)"(0)63c, 1)64c, 2). From equation (2) the angles h

(f1 ,m)
and h

(f2 ,n)
can

be calculated. We assume an excitation source with two frequencies f
1

and f
2

is



Figure 4. The dispersion curves of the fundamental modes.
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piston-like at z"0, and only radiates two fundamental modes, i.e., the ( f
1
, m) and

( f
2
, n) modes. Because of c

(f1 ,m)
"c

(f2 ,n)
, the SF and DF waves in the waveguide

have the cumulative growth e!ect.
Next we will use a numerical computation to illustrate the "elds of the

cumulative SF and DF waves. For simplicity, the #uid in the waveguide is assumed
to be an ideal gas with the constant values c"334 m/s and c"1)4. On the basis of
equation (28), the cumulative SF and DF wave displacement components along the
oy- and oz-axis, denoted by u(2C)

y
and u(2C)

z
, are given by

u(2C)
y

"

2
+

p/1

(!1)p
cos h

(f1 ,m)
sin h

(f1 ,m)

z
d

u (D)( f
1
$f

2
,m,n)pp exp [ j(u

1
$u

2
) K0

(f1 ,m)~p
) r

p
/c]#c.c.,

u(2C)
z

"

2
+

p/1

z
d

u (D)( f
1
$f

2
,m,n)pp exp [ j(u

1
$u

2
)K0

(f1 ,m)~p
) r

p
/c]#c.c. (31)

In equation (31), &&c.c.'' is the complex conjugation of the preceding term,
u (D)( f

1
$f

2
,m,n)pp (p"1, 2) is determined by equation (16), the angle h

(f1,m)
can be

calculated by equation (2) if f
i
d (i"1, 2), m (or n), and c

(f1,m)
are given. At the

moment, it is easy, from equation (31), to calculate the values of u(2C)
y

and
u(2C)
z

versus (x, y). Figure 5 shows the corresponding "eld patterns of the cumulative
SF and DF waves [corresponding to (u

(f1 ,m)~1
uJ
(f2 ,n)~1

#uJ
(f1 ,m)~1

u
(f2 ,n)~1

)/d]. It
is easy to see that the cumulative SF and DF wave "eld patterns possess the e!ect of



Figure 5. The cumulative SF and DF wave "eld patterns, f
1
d"0)95c, f

2
d"0)63c, c

(f1,m)
"c

(f2 ,n)
"

1)64c, m"3, n"2; (a) the SF case, (b) the DF case.
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two-dimensional cumulative growth, and that the corresponding "eld patterns are
antisymmetrical (due to m"3, n"2).

4. CONCLUSION

As shown above, we originate a comprehensive theory to analyze the generation
of the cumulative SF and DF waves in a two-dimensional hard-walled waveguide.
If an excitation source is of multi-frequency, there will be the SF and DF wave
generation due to the bulk non-linearity of the #uid in the waveguide. In this article,
for simplicity, we assume an excitation source includes two frequencies f

1
and f

2
,

and generates two sets of the fundamental modes, i.e., the ( f
1
,m) and ( f

2
, n) modes.

The cross-interaction of the partial waves of the ( f
1
, m) and ( f

2
, n) modes generates

the SF and DF waves in the waveguide. The results show that the driven SF and
DF waves retain the cumulative e!ect once the two fundamental modes with
di!erent frequencies have the same phase velocities. On the basis of the analysis
method of non-linear acoustic waves at an interface, and the boundary and initial
conditions of excitation, the analytical expression of the cumulative SF and DF
waves has been obtained. It is also found that the symmetrical characteristics of the
cumulative SF and DF wave "elds are determined by those of the two fundamental
modes. Moreover, we illustrate the procedure to calculate the ultimate SF and DF
wave "eld patterns in the waveguide if a pistonlike excitation source at an initial
plane is known.

As for the discussion on the generation of the cumulative SF and DF waves in the
waveguide, the physical model and the analysis process are clear. From the
viewpoint of second order perturbation, we can solve the problem of the cumulative
SF and DF wave generation accurately, if second order approximation is adequate.
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The analysis process described in this article lays a foundation for studying the
cumulative wave generation of time-domain acoustic "elds that may be of
multi-frequency.
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APPENDIX A

The coe$cient matrices [M(k
(fi , l)
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d)] are, respectively, given by
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The right-hand side of equation (21) is expressed as
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